Saturday, October 16, 2010

Windstalk concept is a wind farm without the turbines

The Windstalk concept would generate electricity from the wind without turbines
The Windstalk concept would generate electricity from the wind without turbines

Wind turbines are an increasingly popular way to generate clean energy with large-scale wind farms springing up all over the world. However, many residents near proposed wind farm sites have raised concerns over the aesthetics and the low frequency vibrations they claim are generated by wind turbines. An interesting Windstalk concept devised by New York design firm Atelier DNA could overcome both these problems while still allowing a comparable amount of electricity to be generated by the wind.
So, instead of relying on the wind to turn a turbine to generate electricity, when the pole sways in the wind, the stack of piezoelectric discs are compressed, generating a current through the electrodes. In a nice visual way to indicate how much – if any – power the poles are generating, the top 50cm (20 in.) of each pole is fitted with an LED lamp that glows and dims relative to the amount of power. So when the wind stops, the LED’s go dark.
As a way to maximize the amount of electricity the Windstalk farm would generate, the concept also places a torque generator within the concrete base of each pole. As the poles sway, fluid is forced through the cylinders of an array of current generating shock absorbers to convert the kinetic energy of the swaying poles into electrical energy.
Because the electricity generation capabilities of a Windstalk field site would depend on the wind, the designers have devised a way to store the energy. Below the field of poles would be two large chambers located on top of each other and shaped like the bases of the poles but inverted, (see the cross section image of the pole base section below). When the wind is blowing, part of the electricity generated is used to power a set of pumps that moves water from the lower chamber to the upper one. Then, when the wind dies down, the water flows from the upper chamber down to the lower chamber, turning the pumps into generators.
The WIndstalk project is still only a concept, so the designers haven’t determined the optimal shape for the stalks, saying computer simulations could be used to devise the best profile for maximizing the pole’s movement and variation. Even so, the design team estimates that the overall electricity output of the concept would be comparable to that of a conventional wind turbine array because, even though a single wind turbine that is limited to the same height as the poles may produce more energy than a single Windstalk, the Windstalks can be packed in much denser arrays.
The Atelier DNA Windstalk concept took out second prize in the Land Art Generator Initiative (LAGI) competition this year that asked entrants to “design a series of land/environmental art installations that uniquely combine aesthetic intrigue and artistic concept with clean energy generation.”

Flat batteries could improve performance and lower cost of energy storag

A new planar sodium-nickel chloride battery could deliver 30 percent more power at lower t... A new planar sodium-nickel chloride battery could deliver 30 percent more power at lower temperatures than its cylindrical counterpart 
In the continuing search for ever more efficient and cheaper batteries, researchers at the Department of Energy’s (DoE) Pacific Northwest National Laboratory (PNNL) have managed to increase the performance of sodium-nickel chloride batteries in an interesting way – flattening them. No, not running them down until they’re out of juice, but rather replacing their typical cylindrical shape with a flat disc design. The redesign allows the battery to deliver 30 percent more power at lower temperatures, making them a viable alternative to lithium-ion batteries.
The batteries are made from abundant materials such as alumina, sodium chloride and nickel, making them cheaper to produce than lithium-ion batteries, while the 30 percent boost in performance reported by the PNNL researchers means they could still offer the performance necessary to compete with lithium-ion batteries in consumer devices. Additionally, sodium-beta batteries aren’t prone to the thermal runaway condition that has seen various lithium-ion batteries catching fire.
Sodium-beta alumina batteries have been around since the 1960s but their traditional tubular, cylindrical shape doesn’t allow for the efficient discharge of stored electrochemical energy. Raising the temperature lowers the battery’s internal resistance but this lowers the cost effectiveness of the battery and shortens its lifespan. These issues resulted in them being surpassed by the better performing lithium-ion batteries that power the bulk of our mobile electronic devices today.
But the PNNL researchers were keen to take advantage of the cheaper materials used in sodium-beta batteries and thought a redesign might overcome the technical and cost issues. They found that a planar design allows for a thinner cathode and a larger surface area for a given cell volume. Because the ions can flow in a larger area and shorter pathway, they experience lower resistance. Additionally, the new design incorporates a layer of solid electrolytes, which also lowers resistance.
It is the resulting reduction in resistance that allows the battery to be operated at lower temperatures while maintaining a power output 30 percent more than a similar-sized battery with a cylindrical design.
Another benefit of the battery redesign is that the battery’s flat components can be easily stacked to produce a much more compact battery. The researchers say this makes the planar batteries an attractive option for large-scale energy storage, such as in electricity substations where they could be used to balance the generation and delivery of wind and solar power on the grid.
"Our goal is to get a safer, more affordable battery into the market for energy storage. This development in battery technology gets us one step closer," said PNNL Scientist Xiaochuan Lu, co-author of the paper detailing the planar battery that appears in the October 8 issue of ECS Transactions.

Scientists Perfect Making Molecular Nanowires

Scientists at the University of Leeds have perfected a new technique that allows them to make molecular nanowires out of thin strips of ring-shaped molecules known as discotic liquid crystals (DLCs).
The findings could be an important step in the development of next generation electronic devices, such as light-harvesting cells and low-cost biosensors that could be used to test water quality in developing countries.
DLCs are disk-shaped molecules that are one of the more promising candidates for organic electronic devices. However, controlling their alignment has proved challenging to scientists and this has been a major barrier to their use in the liquid crystal display industry and as molecular wires.
"DLC molecules have a tendency to stack on top of each other like a pile of coins," said researcher Professor Stephen Evans from the University of Leeds. "But the difficulty comes in controlling the orientation of such columnar stacks with respect to the surface on which they lie. This is crucial for their future application.
"Traditionally, scientists have tried to get DLCs to align simply by rubbing the surface they sit on with a cloth to create micro grooves. This fairly primitive method works fine for macroscopic areas, but for new generations of devices we need to accurately control how liquid crystal arranges itself on the surface."
The Leeds team, led by Professor Richard Bushby and Professor Evans, has developed a completely novel technique using patterned surfaces to selectively control alignment, allowing them to stack the piles neatly to create molecular 'wires'.
The technique involves printing sheets of gold or silicon with self-assembled monolayers, which can be patterned with 'stripes' of high and low-energy. When a droplet of liquid crystal is applied to this patterned surface and heated, it spontaneously spreads out like liquid fingers over the high-energy stripes, leaving the low-energy regions bare.
Professor Evans said: "Within the stripes we found molecules arranged into hemi-cylindrical columns each several microns long, which we believe to be the highest level of control over DLC alignment to date. We also found that the narrower the stripes, the better the ordered the columns."
The team are hopeful that this level of control could lead to the development of a new type of biosensor, which could test for anything that alters the surface properties.
"By changing the surface properties we can get switch between alignments which is very interesting from the point of view or sensing devices," added Professor Evans. "Most biosensors require a backlight to see when a change has occurred, but it is very easy to see when a liquid crystal has changed direction -- you just hold it up to the light.
"This opens up great possibilities for the production of very simple and, more importantly, cheap biosensors that could be widely used in the developing world."
The team are now testing the conductivity of these wires in the hope that they could be used for energy transfer in molecular systems. They are also looking at ways to polymerise the wires to make them stronger.
The project was funded by the Engineering and Physical Sciences Research Council (EPSRC) and the findings were recently published in the journal Advanced Functional Materials.

Charcoal Biofilter Cleans Up Fertilizer Waste Gases


Removing the toxic and odorous emissions of ammonia from the industrial production of fertilizer is a costly and energy-intensive process. Now, researchers in Bangladesh have turned to microbes and inexpensive wood charcoal to create a biofilter that can extract the noxious gas from vented gases and so reduce pollution levels from factories in the developing world.
Writing in the International Journal of Environment and Pollution, Jahir Bin Alam, A. Hasan and A.H. Pathan of the Department of Civil and Environmental Engineering, at Shahjalal University of Science and Technology, in Sylhet, explain that biofiltration using soil or compost has been used to treate waste gases for the last two decades. There are simple filters for reducing odors and more sophisticated units for removing specific chemicals, such as hydrogen sulfide, from industrial sources.
Among the many advantages are the fact that biofiltration is environment friendly technology, resulting in the complete degradation by oxidation of toxic pollutants to water and carbon dioxide without generating a residual waste stream. It also uses very little energy. Biofilters are widely used in the developed world but their use in the developing world which is rapidly being industrialized but not necessarily considering pollution control.
The Shahjalal team has now built a prototype biofilter for ammonia extraction based on wood charcoal in which the nitrogen-fixing microbe Nitrosomonas europaea has been grown. This microbe derives all its energy for metabolism, growth, and reproduction from ammonia, which it absorbs and oxidizes to nitrite. The microbe is commonly found in soil, sewage, freshwater, and on buildings and monuments in polluted cities.
The team found that their prototype biofilter could function at an ammonia concentration of 100 to 500 milligrams per liter of gas and remove the ammonia from this gas stream almost completely. Approximately 93% removal of ammonia gas was seen within seven days.

Low-Dose Exposure to Chemical Warfare Agent May Result in Long-Term Heart Damage


New research has found that the pattern of heart dysfunction with sarin exposure in mice resembles that seen in humans. Sarin is a chemical warfare agent belonging to class of compounds called organophosphates -- the basis for insecticides, herbicides and nerve agents. As an inhibitor of the nervous system enzyme acetylcholinesterase, sarin can cause convulsions, stoppage of breathing and death.
Aiming to determine the delayed cardiac effects of sarin, researchers studied mice injected with sarin -- at doses too low to produce visible symptoms -- 10 weeks after the exposure.
"The two-month period was used to simulate the late onset effect of sarin/nerve agents in gulf war veterans," said Mariana Morris, director of the research program. "There are suggestions that gulf war illness; in which symptoms are long-lasting, may be related to exposure to low-dose chemical warfare agents."
Cardiac damage detected in sarin-exposed mice at 10 weeks, but not earlier, included:
  • Left ventricular dilation, meaning the heart's left ventricle is larger.
  • Prolonged ventricular repolarization, an electrical conduction anomaly that could lead to heart rhythm abnormalities.
  • Reduction in contractility, the extent of ventricular contraction and hence the amount of blood pumped from the ventricle when it contracts.
"These results have implications for the military in times of conflict and for civilian populations in cases of environmental or occupational exposure," Morris said.
The research is being presented at the American Heart Association's High Blood Pressure Research 2010 Scientific Sessions, being held in Washington, D.C., Oct. 13-16, 2010.

Why Arsenic Can Be Deadly, Yet Also Function as Theapeutic Against Disease

 Scientists have solved an important mystery about why an arsenic compound, called arsenite, can kill us, and yet function as an effective therapeutic agent against disease and infections. According to new research published in the October 2010 issue of Genetics scientists from Johns Hopkins, Baylor and Stanford discovered that arsenite, a common water contaminant in many parts of the world, affects a special protein folding machine in yeast, called TCP, also present in humans.
This information not only opens the doors to developing safer therapeutic alternatives to arsenite-based medicines, but it may allow researchers counter the negative effects of arsenite poisoning.
"By better understanding arsenite, we might be able to protect humans from its hazards in the future," said Jef D. Boeke, Ph.D., co-author of the study from the Department of Molecular Biology and Genetics and The High Throughput Biology Center at The Johns Hopkins University School of Medicine in Baltimore. "Arsenite also has beneficial effects, and by focusing on these, we might be able to find safer ways to reap the beneficial effects without the inherent risks involved in using a compound derived from arsenic."
To make this discovery, scientists used advanced genomic tools and biochemical experiments to show that arsenic disturbs functions of the machinery (chaperonin complex) required for proper folding and maturation of several proteins and protein complexes within yeast cells. This mechanism of action by arsenic is not unique to yeast, as it has been shown to exist in a range of organisms from bacteria to mammals.
"As the human population grows, freshwater supplies become increasingly precious, but unfortunately some of this water has been contaminated with arsenite," said Mark Johnston, Editor-in-Chief of the journal Genetics. "The more we learn about how this compound affects our bodies, the more we'll eventually be able to counter its deadly effects. In addition, we know that under certain controlled doses, arsenite has therapeutic value. This research hopefully gets us closer to a new generation of drugs that achieve maximum benefit with minimum risk."

Silicon Strategy Shows Promise for Batteries: Lithium-Ion Technique for Electric Cars, Large-Capacity Storage


Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released.
A team of Rice University and Lockheed Martin scientists has discovered a way to use simple silicon to radically increase the capacity of lithium-ion batteries.
Sibani Lisa Biswal, an assistant professor of chemical and biomolecular engineering, revealed how she, colleague Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, and Steven Sinsabaugh, a Lockheed Martin Fellow, are enhancing the inherent ability of silicon to absorb lithium ions.
Their work was introduced at Rice's Buckyball Discovery Conference, part of a yearlong celebration of the 25th anniversary of the Nobel Prize-winning discovery of the buckminsterfullerene, or carbon 60, molecule. It could become a key component for electric car batteries and large-capacity energy storage, they said.
"The anode, or negative, side of today's batteries is made of graphite, which works. It's everywhere," Wong said. "But it's maxed out. You can't stuff any more lithium into graphite than we already have."
Silicon has the highest theoretical capacity of any material for storing lithium, but there's a serious drawback to its use. "It can sop up a lot of lithium, about 10 times more than carbon, which seems fantastic," Wong said. "But after a couple of cycles of swelling and shrinking, it's going to crack."
Other labs have tried to solve the problem with carpets of silicon nanowires that absorb lithium like a mop soaks up water, but the Rice team took a different tack.
With Mahduri Thakur, a post-doctoral researcher in Rice's Chemical and Biomolecular Engineering Department, and Mark Isaacson of Lockheed Martin, Biswal, Wong and Sinsabaugh found that putting micron-sized pores into the surface of a silicon wafer gives the material sufficient room to expand. While common lithium-ion batteries hold about 300 milliamp hours per gram of carbon-based anode material, they determined the treated silicon could theoretically store more than 10 times that amount.
Sinsabaugh described the breakthrough as one of the first fruits of the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice (LANCER). He said the project began three years ago when he met Biswal at Rice and compared notes. "She was working on porous silicon, and I knew silicon nanostructures were being looked at for battery anodes. We put two and two together," he said.
Nanopores are simpler to create than silicon nanowires, Biswal said. The pores, a micron wide and from 10 to 50 microns long, form when positive and negative charge is applied to the sides of a silicon wafer, which is then bathed in a hydrofluoric solvent. "The hydrogen and fluoride atoms separate," she said. "The fluorine attacks one side of the silicon, forming the pores. They form vertically because of the positive and negative bias."
The treated silicon, she said, "looks like Swiss cheese."
The straightforward process makes it highly adaptable for manufacturing, she said. "We don't require some of the difficult processing steps they do -- the high vacuums and having to wash the nanotubes. Bulk etching is much simpler to process.
"The other advantage is that we've seen fairly long lifetimes. Our current batteries have 200-250 cycles, much longer than nanowire batteries," said Biswal.
They said putting pores in silicon requires a real balancing act, as the more space is dedicated to the holes, the less material is available to store lithium. And if the silicon expands to the point where the pore walls touch, the material could degrade.
The researchers are confident that cheap, plentiful silicon combined with ease of manufacture could help push their idea into the mainstream.
"We are very excited about the potential of this work," Sinsabaugh said. "This material has the potential to significantly increase the performance of lithium-ion batteries, which are used in a wide range of commercial, military and aerospace applications
Biswal and Wong plan to study the mechanism by which silicon absorbs lithium and how and why it breaks down. "Our goal is to develop a model of the strain that silicon undergoes in cycling lithium," Wong said. "Once we understand that, we'll have a much better idea of how to maximize its potential."

Potential of Lead-Free Piezoelectric Ceramics


Crystal structure of KNBT before the application of an electric field (left) and after (right). The purple spheres are either sodium or potassium atoms, the red spheres are oxygen atoms, the small blue sphere is titanium. The figures show the arrangement of the atoms changing from rhombohedral, where the a, b and c axes are of the same length and rhombohedral angle is less than 90, to tetragonal symmetry, where the a and b axes are of the same length and the c axis is longer. 
Scientists are using Diamond Light Source, the UK's national synchrotron facility, to discover how we can detoxify our electronic gadgets. Results published in the journal Applied Physics Letters reveal the potential for new artificial materials that could replace lead-based components in everyday products from inkjet printers to digital cameras.
Researchers from the Institute for Materials Research at the University of Leeds' Faculty of Engineering used the Diamond synchrotron to investigate the structure and properties of piezoelectric ceramics in order to develop more environmentally friendly alternatives to the widely-used but toxic ceramic crystal lead zirconium titanate (PZT).
The team used the I15 Extreme Conditions beamline at Diamond to probe the interior crystal structure of the ceramics with a high-energy pinpoint X-ray beam and saw changes in the crystal structure as an electric field was applied. Their results demonstrate that this new material, potassium sodium bismuth titanate (KNBT), shows the potential to perform the same job as its lead counterpart.
Dr Tim Comyn, lead investigator on the project, said: "These results are very encouraging. Although harmless when in use, at the end of their lifetime these PZT gadgets have to be carefully disposed of due to their lead content and as a consequence, there is significant interest in developing lead-free ceramics."
Piezoelectric materials generate an electrical field when pressure is applied, and vice versa. For example in gas igniters, like those used on ovens and fires, a piezoelectric crystal creates sparks when hit with the hammer. In an electrical field, it undergoes a phase transition, that is changes in the crystal structure.
The team will continue to work at Diamond to study the electric field induced transformation at high speed (1000 times per second) and under various conditions using state of the art detectors.
Adam Royles, PhD student on the project, said: "Not only could a lead-free solution mean safer disposal of electronic equipment, by virtue of the absence of lead, these new materials are far lighter than PZT. The piezoelectric market has applications in many fields, where a lighter lead-free alternative could make quite a difference."
In the medical field, PZT is used in ultrasound transducers, where it generates sound waves and sends the echoes to a computer to convert into a picture. Piezoelectric ceramics also hold great potential for efficient energy harvesting, a possible solution for a clean sustainable energy source in the future.
Lead-based electronic ceramics are one of only a few exemptions to the European directive on the restriction of the use of certain hazardous substances in electrical and electronic components (2002/95/EC). This exemption will be reviewed again in 2012.
The global market for piezoelectric-operated actuators and motors was estimated to be $6.6 billion in 2009 and is estimated to reach $12.3 billion by 2014.

Wednesday, October 13, 2010

Whale Poop Pumps Up Ocean Health


A conceptual model of the whale pump. In the common concept of the biological pump, zooplankton feed in the euphotic zone and export nutrients via sinking fecal pellets, and vertical migration. Fish typically release nutrients at the same depth at which they feed. Excretion for marine mammals, tethered to the surface for respiration, is expected to be shallower in the water column than where they feed.
Whale feces -- should you be forced to consider such matters -- probably conjures images of, well, whale-scale hunks of crud, heavy lumps that sink to the bottom. But most whales actually deposit waste that floats at the surface of the ocean, "very liquidy, a flocculent plume," says University of Vermont whale biologist, Joe Roman.
And this liquid fecal matter, rich in nutrients, has a huge positive influence on the productivity of ocean fisheries, Roman and his colleague, James McCarthy from Harvard University, have discovered.
Their discovery, published Oct. 11 in the journal PLoS ONE, is what Roman calls a "whale pump."
Whales, they found, carry nutrients such as nitrogen from the depths where they feed back to the surface via their feces. This functions as an upward biological pump, reversing the assumption of some scientists that whales accelerate the loss of nutrients to the bottom.
And this nitrogen input in the Gulf of Maine is "more than the input of all rivers combined," they write, some 23,000 metric tons each year.
Nitrogen limits
It is well known that microbes, plankton, and fish recycle nutrients in ocean waters, but whales and other marine mammals have largely been ignored in this cycle. Yet this study shows that whales historically played a central role in the productivity of ocean ecosystems -- and continue to do so despite diminished populations.
Despite the problems of coastal eutrophication -- like the infamous "dead zones" in the Gulf of Mexico caused by excess nitrogen washing down the Mississippi River -- many places in the ocean of the Northern Hemisphere have a limited nitrogen supply.
Including where Roman and McCarthy completed their study: the once fish-rich Gulf of Maine in the western North Atlantic. There, phytoplankton, the base of the food chain, has a brake on its productivity when nitrogen is used up in the otherwise productive summer months. (In other parts of the ocean, other elements are limiting, like iron in some regions of the Southern oceans.)
"We think whales form a really important direct influence on the production of plants at the base of this food web," says McCarthy.
"We found that whales increase primary productivity," Roman says, allowing more phytoplankton to grow, which then "pushes up the secondary productivity," he says, of the critters that rely on the plankton. The result: "bigger fisheries and higher abundances throughout regions where whales occur in high densities," Roman says.
"In areas where whales were once more numerous than they are today, we suggest that they were more productive," say McCarthy.
The numbers of whales that swam the oceans before human harvests began is a question of some controversy. "Conservative estimates are that large whales have been cut to 25 percent," says Roman, "though the work done on whale genetics shows that we're probably closer to 10 percent," of historical levels. To cover the range of possibilities, Roman and McCarthy's study considered several scenarios, estimating current whale stocks as 10, 25, or 50 percent of historical levels.
"Anyway you look at it, whales played a much bigger role in ecosystems in the past than they do now," says Roman, a conservation biologist in the University of Vermont's Rubenstein School of Environment and Natural Resources and the author of a book on whales.
"And everything that we do to enhance recovery and restoration of the great whales to something like pre-harvest levels works against other deleterious effects that humans are causing in the oceans," says McCarthy, like the decline of overall ocean productivity as climate change drives up water temperatures, which, in turn, causes a decline in nutrients for phytoplankton.
Save the whales, save the fishermen
A further implication of the new study is that ongoing calls by some governments to relax international whaling restrictions are ill-considered. Culls and bounty programs would reduce nitrogen and "decrease overall productivity," Roman and McCarthy note.
"For a long time, and still today, Japan and other countries have policies to justify the harvest of marine mammals," says Roman. These countries argue that whales compete with their commercial fisheries.
"Our study flips that idea on its head," Roman says, "Not only is that competition small or non-existent, but actually the whales present can increase nutrients and help fisheries and the health of systems wherever they are found. By restoring populations we have a chance to glimpse how amazingly productive these ecosystems were in the past."

Future of Electric Cars? Running Fuel Cells on Biodiesel


A smart diesel reformer and a tolerant fuel cell are the core components of a new type of electric power supply unit. Environmentally friendly and flexible, the unit could be a serious contender in the market for generators in electric vehicles and other applications.
The power supply unit can run on biodiesel as well as regular diesel.
This combination of two advanced technologies is now undergoing testing, thanks to funding under the Research Council's RENERGI programme. In trials, a 200-W solid-acid fuel cell ran on both pure hydrogen and on hydrogen produced from diesel by the unit's reformer -- with only an insignificant difference in performance.
Low CO2 emissions
The reformer converts hydrocarbons into hydrogen, CO2 and heat. Due to the unit's high efficiency, CO2 emissions are substantially lower than in conventional combustion engines, and no other demonstrable exhaust is discharged -- meaning that diesel particulates, black carbon soot, nitrous oxide (NOx) and carbon monoxide (CO) are elimi¬nated. An added plus is that the reformer emits no smoke or odour.
The silent electric generator is being developed and produced by the Norwegian company Nordic Power Systems (NPS). The California firm SAFCell Inc. is developing and will deliver the new type of fuel cell. Also on the team is the California Institute of Technology (Caltech). Dag Øvrebø, Technical Director of NPS, has many years' experience with fuel cells and has been working closely with Caltech on this new technologyGerman conversion technology
It all began in Germany. In 2006 the NPS founders came across an interesting conversion technology developed at RWTH Aachen University in the late 1990s. NPS acquired the licensing rights, envisioning a clear market potential for an electric power supply unit based on a fuel cell that is not dependent on hydrogen filling stations, and that can run on regular, easily available fuel without surrendering the environmental benefits of fuel cells.
In 2009 NPS secured usage rights to the new US solid-acid technology for use with various fuel types such as diesel and biofuels.
Tor-Geir Engebretsen, Managing Director and co-founder of NPS, is very pleased with this summer's tests. "Now we have demonstrated that the solid-acid technology works. The next step is to test a larger unit of 1 200 W."
Armed Forces first user
Engebretsen points out that since the technology is scalable, it is well suited for future generators in electric vehicles. But NPS is taking the development in stages. The company's first market is power supply for the defence industry; NPS has a technology development agreement with the Royal Norwegian Armed Forces. In addition, NPS has a product development agreement with Marshall Land Systems, of the UK, with the aim of supplying silent-running generators for the British Armed Forces.
If all goes according to plan, the unit being developed with Marshall will be ready for market launch by mid-2011, while the solid-acid fuel cell will be phased in somewhat later. An assembly plant in Høyanger, Norway, is scheduled to open in early 2012 with Industrial Development Corporation of Norway (SIVA) as contractor.
Nordic Power Systems (NPS)
NPS currently has seven employees in Norway, and six in the USA through a contract with SAFCell in California.
  • So far NOK 50 million has been spent on development and market preparations.
  • Financing has come from a score of private investors and from: o Research Council of Norway o Innovation Norway o Royal Norwegian Armed Forces o Høyanger Næringsutvikling AS
The project
  • Name: Development of cutting-edge fuel cell technology, integration and testing of NPS' proprietary fuel cell generator for industrialisation in Norway
  • Project manager: Nordic Power Systems/Dag Øvrebø
  • Partners: SAFCell, Caltech, Nordic Power Systems
  • Overall budget: NOK 11.8 million. Funding under the RENERGI programme: NOK 5.9 million

NASA Mission to Asteroid Gets Help from Hubble Space Telescope


NASA's Hubble Space Telescope snapped these images of the asteroid Vesta in preparation for the Dawn spacecraft's visit in 2011. Each of the four Hubble images captures views of Vesta during its 5.34-hour rotation period.
NASA's Hubble Space Telescope has captured images of the large asteroid Vesta that will help scientists refine plans for the Dawn spacecraft's rendezvous with Vesta in July 2011.
Scientists have constructed a video from the images that will help improve pointing instructions for Dawn as it is placed in a polar orbit around Vesta. Analyses of Hubble images revealed a pole orientation, or tilt, of approximately four degrees more to the asteroid's east than scientists previously thought.
This means the change of seasons between the southern and northern hemispheres of Vesta may take place about a month later than previously expected while Dawn is orbiting the asteroid. The result is a change in the pattern of sunlight expected to illuminate the asteroid. Dawn needs solar illumination for imaging and some mapping activities.
"While Vesta is the brightest asteroid in the sky, its small size makes it difficult to image from Earth," said Jian-Yang Li, a scientist participating in the Dawn mission from the University of Maryland in College Park. "The new Hubble images give Dawn scientists a better sense of how Vesta is spinning because our new views are 90 degrees different from our previous images. It's like having a street-level view and adding a view from an airplane overhead."
The recent images were obtained by Hubble's Wide Field Camera 3 in February. The images complemented previous ones of Vesta taken from ground-based telescopes and Hubble's Wide Field and Planetary Camera 2 between 1983 and 2007. Li and his colleagues looked at 216 new images -- and a total of 446 Hubble images overall -- to clarify how Vesta was spinning. The journal Icarus recently published the report online.
"The new results give us food for thought as we make our way toward Vesta," said Christopher Russell, Dawn's principal investigator at the University of California, Los Angeles. "Because our goal is to take pictures of the entire surface and measure the elevation of features over most of the surface to an accuracy of about 33 feet, or the height of a three-story building, we need to pay close attention to the solar illumination. It looks as if Vesta is going to have a late northern spring next year, or at least later than we planned."
Launched in September 2007, Dawn will leave Vesta to encounter the dwarf planet Ceres in 2015. Vesta and Ceres are the most massive objects in the main asteroid belt between Mars and Jupiter. Scientists study these celestial bodies as examples of the building blocks of terrestrial planets like Earth. Dawn is approximately 134 million miles away from Vesta. Next summer, the spacecraft will make its own measurements of Vesta's rotating surface and allow mission managers to pin down its axis of spin.
"Vesta was discovered just over 200 years ago, and we are excited now to be on the threshold of exploring it from orbit," said Bob Mase, Dawn's project manager at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "We planned this mission to accommodate our imprecise knowledge of Vesta. Ours is a journey of discovery and, with our ability to adapt, we are looking forward to collecting excellent science data at our target."
The Dawn mission is managed by JPL for NASA's Science Mission Directorate at the agency's headquarters in Washington. Orbital Sciences Corporation of Dulles, Va., designed and built the spacecraft. Several international space organizations are part of the mission team.

Ocean Acidification Poses Little Threat to Whales’ Hearing, Study Suggests


Low-frequency sound waves in the ocean cause borate to lose an -OH group and become boric acid (top). In the process, the sound waves lose energy. An identical sound wave has no effect on boric acid (bottom). More-acidic conditions reduce the amount of borate in seawater, which led some researchers to suggest that ocean acidification will lead to less absorption of sound energy, allowing sound waves to travel farther in the ocean than they do at present. WHOI scientists showed that the effect will be minimal.
Contrary to some previous, highly publicized, reports, ocean acidification is not likely to worsen the hearing of whales and other animals, according to a Woods Hole Oceanographic Institution (WHOI) scientist who studies sound propagation in the ocean.
Tim Duda, of WHOI's Applied Ocean Physics & Engineering Department, undertook a study in response to warnings that as the ocean becomes more acidic -- due to elevated levels of atmospheric carbon dioxide (CO2)--noise from ships will be able to travel farther and possibly interfere with whales and other animals that rely on sound to navigate, communicate, and hunt.
Duda and WHOI scientists Ilya Udovydchenkov, Scott Doney, and Ivan Lima, along with colleagues at the Naval Postgraduate School, designed mathematical models of sound propagation in the oceans. Their models found that the increase would be, at most, 2 decibels by the year 2100 -- a negligible change compared with noise from natural events such as storms and large waves. Noise levels are predicted to change even less than this in higher-noise areas near sources such as shipping lanes, Duda said.
Their work is published in the September 2010 issue of the Journal of the Acoustical Society of America.

Tuesday, October 12, 2010

Efficient, Inexpensive Plastic Solar Cells Coming Soon


Physicists at Rutgers University have discovered new properties in a material that could result in efficient and inexpensive plastic solar cells for pollution-free electricity production.
The discovery, posted online and slated for publication in an upcoming issue of the journal Nature Materials, reveals that energy-carrying particles generated by packets of light can travel on the order of a thousand times farther in organic (carbon-based) semiconductors than scientists previously observed. This boosts scientists' hopes that solar cells based on this budding technology may one day overtake silicon solar cells in cost and performance, thereby increasing the practicality of solar-generated electricity as an alternate energy source to fossil fuels.
"Organic semiconductors are promising for solar cells and other uses, such as video displays, because they can be fabricated in large plastic sheets," said Vitaly Podzorov, assistant professor of Physics at Rutgers. "But their limited photo-voltaic conversion efficiency has held them back. We expect our discovery to stimulate further development and progress."
Podzorov and his colleagues observed that excitons -- particles that form when semiconducting materials absorb photons, or light particles -- can travel a thousand times farther in an extremely pure crystal organic semiconductor called rubrene. Until now, excitons were typically observed to travel less than 20 nanometers -- billionths of a meter -- in organic semiconductors.
"This is the first time we observed excitons migrating a few microns," said Podzorov, noting that they measured diffusion lengths from two to eight microns, or millionths of a meter. This is similar to exciton diffusion in inorganic solar cell materials such as silicon and gallium arsenide.
"Once the exciton diffusion distance becomes comparable to the light absorption length, you can collect most of the sunlight for energy conversion," he said.
Excitons are particle-like entities consisting of an electron and an electron hole (a positive charge attributed to the absence of an electron). They can generate a photo-voltage when they hit a semiconductor boundary or junction, and the electrons move to one side and the holes move to the other side of the junction. If excitons diffuse only tens of nanometers, only those closest to the junctions or boundaries generate photo-voltage. This accounts for the low electrical conversion efficiencies in today's organic solar cells.
"Now we lose 99 percent of the sunlight," Podzorov noted.
While the extremely pure rubrene crystals fabricated by the Rutgers physicists are suitable only for laboratory research at this time, the research shows that the exciton diffusion bottleneck is not an intrinsic limitation of organic semiconductors. Continuing development could result in more efficient and manufacturable materials.
The scientists discovered that excitons in their rubrene crystals behaved more like the excitons observed in inorganic crystals -- a delocalized form known as Wannier-Mott, or WM, excitons. Scientists previously believed that only the more localized form of excitons, called Frenkel excitons, were present in organic semiconductors. WM excitons move more rapidly through crystal lattices, resulting in better opto-electronic properties.
Podzorov noted that the research also produced a new methodology of measuring excitons based on optical spectroscopy. Since excitons are not charged, they are hard to measure using conventional methods. The researchers developed a technique called polarization resolved photocurrent spectroscopy, which dissociates excitons at the crystal's surface and reveals a large photocurrent. The technique should be applicable to other materials, Podzorov claims.
Collaborating with Podzorov on the research were postdoctoral researcher Hikmat Najafov, graduate students Bumsu Lee and Qibin Zhou, and Leonard Feldman, director of the Rutgers Institute for Advanced Materials, Devices and Nanotechnology (IAMDN). Najafov and Podzorov are also affiliated with IAMDN.
Funding was provided by the National Science Foundation's Division of Materials Research and Japan's New Energy and Industrial Technology Development Organization (NEDO).

NASA Partnership Sends Earth Science Data to Africa


Downward-looking camera view of the area around Kruger National Park in northeastern South Africa, acquired Aug. 18, 2010, by the MISR instrument on NASA's Terra spacecraft. The imaged area is 380 kilometers (236 miles) wide. The bright white feature above and to the right of image center is the Palabora Copper Mine, and the water body near upper right is Lake Massingir in Mozambique. Kruger National Park lies between these landmarks and stretches from north to south for some 350 kilometers (217 miles). 
A unique partnership between NASA and agencies in Africa and Europe has sent more than 30 terabytes of free Earth science satellite data to South African researchers to support sustainable development and environmental applications in Africa.
The data from one of the instruments on NASA's Terra satellite provide observations of Africa's surface and atmosphere, including vegetation structure, airborne pollution particles, cloud heights and winds. Transfer of these data to a distribution center in Africa will make it broadly accessible to African users who have not been able to remotely download the large data files because of limitations in the continent's Internet infrastructure.
The data are from the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. NASA's Jet Propulsion Laboratory in Pasadena, Calif., built and manages the instrument, and NASA's Langley Research Center in Hampton, Va., processes, archives and distributes the data.
MISR has been making continuous measurements of Earth's surface and atmosphere for more than a decade. MISR observes the sunlit portion of Earth continuously, viewing the entire globe between 82 degrees north and 82 degrees south latitude every nine days. Instead of viewing Earth from a single perspective, the instrument collects images from nine widely spaced view angles.
"NASA is committed to helping governments, organizations and researchers around the world make effective use of Earth observation data to aid in environmental decision making," said Hal Maring, a program manager in the Earth Science Division of the Science Mission Directorate at NASA Headquarters in Washington. "These efforts support the goals of the Group on Earth Observations, a partnership of international agencies that promotes collaborative use of Earth science data."
South Africa's Council for Scientific and Industrial Research (CSIR) in Pretoria will distribute the data at no charge to the research community in the region. CSIR will facilitate access to the large volume of MISR data as part of its broad strategy of educating, training and transferring knowledge to the southern African research community.
"The data transfer can be seen as a birthday present from NASA to the newly-formed South African National Space Agency," said Bob Scholes, CSIR research group leader for ecosystem processes and dynamics. "It will kick-start a new generation of high-quality land surface products, with applications in climate change and avoiding desertification." Desertification is the gradual transformation of habitable land into desert due to climate change or destructive land use practices.
The partnership began in spring 2008, when MISR science team member Michel Verstraete of the European Commission Joint Research Centre Institute for Environment and Sustainability (JRC-IES) in Ispra, Italy, participated in an intensive CSIR field campaign to study the environment around Kruger National Park, a major wildlife reserve in South Africa. The researchers studied the area using direct, airborne and space-based measurements. During the campaign, Verstraete learned of the widespread interest by the South African research community in remote-sensing techniques and applications.
In response, JRC-IES and CSIR signed an agreement in July 2008 to facilitate the interaction and exchange of people, knowledge, data and software.
NASA became involved in the collaboration in 2009 after a training workshop for MISR users in Cape Town, South Africa, organized by JPL and Langley Research Center. Although the workshop sparked interest in the potential use of MISR data, it soon became apparent that accessing a large volume of data was a major hurdle for research and applications in developing countries in general and Africa in particular. While Internet connectivity in Africa has improved greatly in recent years, access and bandwidth remain too limited to support downloading vast data files. This led CSIR to host the data directly.
NASA shipped most of the data on high-density tapes this summer. The agencies will ensure the database stays updated with current MISR observations by upgrading connectivity and facilitating sharing of data among participating academic and research institutions.
"This multi-party collaboration will significantly strengthen academic and research institutions in southern Africa and support sustainable development of the entire subcontinent," said Verstraete, who will spend six months in southern Africa next year to help the regional remote-sensing community use the data.

Huge Parts of World Are Drying Up: Land 'Evapotranspiration' Taking Unexpected Turn


The soils in large areas of the Southern Hemisphere, including major portions of Australia, Africa and South America, have been drying up in the past decade, a group of researchers conclude in the first major study to ever examine "evapotranspiration" on a global basis.
The soils in large areas of the Southern Hemisphere, including major portions of Australia, Africa and South America, have been drying up in the past decade, a group of researchers conclude in the first major study to ever examine "evapotranspiration" on a global basis.
Most climate models have suggested that evapotranspiration, which is the movement of water from the land to the atmosphere, would increase with global warming. The new research, published online this week in the journal Nature, found that's exactly what was happening from 1982 to the late 1990s.
But in 1998, this significant increase in evapotranspiration -- which had been seven millimeters per year -- slowed dramatically or stopped. In large portions of the world, soils are now becoming drier than they used to be, releasing less water and offsetting some moisture increases elsewhere.
Due to the limited number of decades for which data are available, scientists say they can't be sure whether this is a natural variability or part of a longer-lasting global change. But one possibility is that on a global level, a limit to the acceleration of the hydrological cycle on land has already been reached.
If that's the case, the consequences could be serious.
They could include reduced terrestrial vegetation growth, less carbon absorption, a loss of the natural cooling mechanism provided by evapotranspiration, more heating of the land surface, more intense heat waves and a "feedback loop" that could intensify global warming.
"This is the first time we've ever been able to compile observations such as this for a global analysis," said Beverly Law, a professor of global change forest science at Oregon State University. Law is co-author of the study and science director of the AmeriFlux network of 100 research sites, which is one major part of the FLUXNET synthesis that incorporates data from around the world.
"We didn't expect to see this shift in evapotranspiration over such a large area of the Southern Hemisphere," Law said. "It is critical to continue such long-term observations, because until we monitor this for a longer period of time, we can't be sure why this is occurring."
Some of the areas with the most severe drying include southeast Africa, much of Australia, central India, large parts of South America, and some of Indonesia. Most of these regions are historically dry, but some are actually tropical rain forests.
The rather abrupt change from increased global evapotranspiration to a near halt in this process coincided with a major El Nino event in 1998, the researchers note in their report, but they are not suggesting that is a causative mechanism for a phenomenon that has been going on for more than a decade now.
Greater evapotranspiration was expected with global warming, because of increased evaporation of water from the ocean and more precipitation overall. And data indeed show that some areas are wetter than they used to be.
However, other huge areas are now drying out, the study showed. This could lead to increased drought stress on vegetation and less overall productivity, Law said, and as a result less carbon absorbed, less cooling through evapotranspiration, and more frequent or extreme heat waves.
Some of the sites used in this study are operated by Law's research group in the central Oregon Cascade Range in the Metolius River watershed, and they are consistent with some of these concerns. In the last decade there have been multiple years of drought, vegetative stress, and some significant forest fires in that area.
Evapotranspiration returns about 60 percent of annual precipitation back to the atmosphere, in the process using more than half of the solar energy absorbed by land surfaces. This is a key component of the global climate system, linking the cycling of water with energy and carbon cycles.
Longer term observations will be needed to determine if these changes are part of decadal-scale variability or a longer-term shift in global climate, the researchers said.
This study was authored by a large group of international scientists, including from OSU; lead author Martin Jung from the Max Planck Institute for Biogeochemistry in Germany; and researchers from the Institute for Atmospheric and Climate Science in Switzerland, Princeton University, the National Center for Atmospheric Research in Colorado, Harvard University, and other groups and agencies.
The regional networks, such as AmeriFlux, CarboEurope, and the FLUXNET synthesis effort, have been supported by numerous funding agencies around the world, including the Department of Energy, NASA, National Science Foundation, and National Oceanic and Atmospheric Administration in the United States.

Global Carbon Cycle: Tiny Creatures May Play a Crucial Role in Mixing Ocean Nutrients


Researchers have mapped the flow field around a swimming Volvox carteri microbe by tracking the movements of tiny tracer particles. The spherical Volvox is swimming towards the top of the image. Streamlines appear as red curves, and the color map corresponds to the fluid velocity.
Two separate research groups are reporting groundbreaking measurements of the fluid flow that surrounds freely swimming microorganisms. Experiments involving two common types of microbes reveal the ways that one creature's motion can affect its neighbors, which in turn can lead to collective motions of microorganism swarms. In addition, the research is helping to clarify how the motions of microscopic swimmers produces large scale stirring that distributes nutrients, oxygen and chemicals in lakes and oceans.
A pair of papers describing the experiments will appear in the Oct. 11 issue of the APS journal Physical Review Letters.
In order to observe the flow that microorganisms produce, researchers at the University of Cambridge tracked the motion of tiny tracer beads suspended in the fluid surrounding the tiny swimmers. They used the technique to study the fluid around two very different types of creatures: a small, blue-green form of algae called Chlamydomonas reinhardtii that swims by paddling with a pair of whip-like flagella, and the larger, spherical alga Volvox carterii that propels itself with thousands of flagella covering its surface.
The tracer beads showed that the two types of organisms generate distinctly different flow patterns, both of which are much more complex than previously assumed. In a related study performed at Haverford College in Pennsylvania, researchers used a high speed camera to track the flow of tracer particles around Chlamydomonas in a thin, two-dimension film of fluid over the course of a single stroke of its flagella.
The studies should help scientists develop new models to predict the fluid motions associated with aquatic microorganisms. The models will provide clearer pictures of the ways microbes mix bodies of water, and potentially offer insights into the role plankton plays in the carbon cycle as it stirs the world's oceans.
David Saintillan (University of Illinois at Urbana Champagne) gives an overview of the microorganism swimming research in a Viewpoint article in the October 11 edition of APS Physics.

New piezoelectric device harvests wasted energy from electronics

The piezoelectric CNF-PZT Cantilever device
The piezoelectric CNF-PZT Cantilever device

Piezoelectric generators that harness otherwise wasted energy from vibrations has been proposed for capturing energy in everything from shoes to roads. Now a new device made out of piezoelectric material by researchers at Louisiana Tech University could allow a wide range of electronic devices to harvest their own wasted operational energy, resulting in devices that are much more energy efficient. It even offers the potential to perpetually power micro and nano devices, such as biomedical devices or remotely located sensors and communication nodes.
The device, designed and fabricated by Dr. Long Que, assistant professor of electrical engineering at Louisiana Tech, uses a cantilever made out of material capable of converting distortions to itself into electrical energy. It is coated with a carbon nanotube film on one side that causes the cantilever to bend back and forth repeatedly when it absorbs light and/or heat. This causes the piezoelectric material to generate power for as long as the light and/or heat source is active.
“The greatest significance of this work is that it offers us a new option to continuously harvest both solar and thermal energy on a single chip, given the self-reciprocating characteristics of the device upon exposure to light and/or thermal radiation,” said Que. “This characteristic might enable us to make perpetual micro/nano devices and micro/nanosystems, and could significantly impact the wireless sensory network.”
The research team’s experiments showed that the device, called a CNF-PZT Cantilever, was able to generate enough power to operate some low-power microsensors and integrated sensors. One of the most impressive aspects of the system was its ability to “self-reciprocate” – perpetually produce energy without needing to draw power from an external energy source.
The researchers say that this self-reciprocation occurs from the cantilever’s constant absorption of photons and its high electrical conduction and rapid thermal dissipation into the environment. The team says it has routinely observed this self-reciprocation phenomenon, not only in the lab, but also in the field under sunlight.
“It is truly a hybrid energy-harvesting technology,” Que said. “My lab has been optimizing and making great progress on this technology in an effort to enhance its efficiency and overall performance, indicating great promise for this technology.”

Monday, October 11, 2010

Researchers Design, Fabricate Innovative Energy Harvesting Device


Dr. Long Que, assistant professor of electrical engineering at Louisiana Tech University, has reported success in designing and fabricating a device that allows microscale electronic devices to harvest their own wasted energy.
The work was described in a paper published in the September edition of Applied Physics Letters, co-authored by students Pushparaj Pathak, Tianhua Zhang, Yuan He, and Shashi Yadav.
Developed at Louisiana Tech and described in the paper, this technology uses a cantilever made out of piezoelectric material -- material capable of converting distortions to itself into electrical energy -- and is coated with a carbon nanotube film on one side. When the film absorbs light and/or thermal energy, it causes the cantilever to bend back and forth repeatedly, which causes the piezoelectric material to generate power as long as the light and/or heat source is active.
Through cyclical bending activity, the device would essentially allow small electronic devices to harvest their own operational energy.
"The greatest significance of this work is that it offers us a new option to continuously harvest both solar and thermal energy on a single chip, given the self-reciprocating characteristics of the device upon exposure to light and/or thermal radiation," said Que. "This characteristic might enable us to make perpetual micro/nano devices and micro/nanosystems, and could significantly impact the wireless sensory network."
In their experiments, Que's research team showed that the device could generate enough power to adequately operate some low-power microsensors and integrated sensors. One of the most unique and innovative aspects of this energy harvesting system is its ability to "self-reciprocate" -- the perpetual production of energy without needing to consume other external energy sources.
The researchers state that the self-reciprocation occurs from the cantilever's constant absorption of photons and its high electrical conduction and rapid thermal dissipation into the environment. The self-reciprocation phenomenon has been routinely observed, not only in the lab, but also in the field under sunlight. This technology can also harvest different types of energies such as vibrational and wind energies.
"It is truly a hybrid energy-harvesting technology," Que said. "My lab has been optimizing and making great progress on this technology in an effort to enhance its efficiency and overall performance, indicating great promise for this technology."
Que believes that, in the future, the device could be used to power a number of different nano and microsystems such as implanted biomedical devices or remotely located sensors and communication nodes.

Technique Allows Researchers to Examine How Materials Bond at the Atomic Level


An approach pioneered by researchers at North Carolina State University gives scientists new insight into the way silicon bonds with other materials at the atomic level. This technique could lead to improved understanding of and control over bond formation at the atomic level, and opportunities for the creation of new devices and more efficient microchips.
Manufacturers build silicon-based devices from layers of different materials. Bonds -- the chemical interaction between adjacent atoms -- are what give materials their distinctive characteristics. "Essentially, a bond is the glue that holds two atoms together, and it is this glue that determines material properties, like hardness and transparency," says Dr. Kenan Gundogdu, assistant professor of physics at NC State and co-author of the research. "Bonds are formed as materials come together. We have influenced the assembly process of silicon crystals by applying strain during bond formation. Manufacturers know that strain makes a difference in how bonds form, but up to now there hasn't been much understanding of how this works on the atomic level."
Gundogdu, along with Dr. David Aspnes, Distinguished University Professor of Physics, and doctoral candidate Bilal Gokce, used optical spectroscopy along with a method of analysis pioneered by Aspnes and former graduate student Dr. Eric Adles that allowed them to examine what was happening on the atomic scale when strain was applied to a silicon crystal.
"Strain has been used to affect overall chemistry for a long time," Aspnes says. "However, no one has previously observed differences in chemical behavior of individual bonds as a result of applying strain in one direction. Now that we can see what is actually happening, we'll gain a much better understanding of its impact on the atomic scale, and ideally be able to put it to use."
According to Gundogdu, "Application of even small amount of strain in one direction increases the chemical reactivity of bonds in certain direction, which in turn causes structural changes. Up to now, strain has been applied when devices are made. But by looking at the effect on the individual atomic bonds we now know that we can influence chemical reactions in a particular direction, which in principle allows us to be more selective in the manufacturing process."
The research appears online in the Sept. 27 Proceedings of the National Academy of Sciences.
"While we are able to exert some directional control over reaction rates, there remains much that we still don't understand," Aspnes adds. "Continuing research will allow us to identify the relevant hidden variables, and silicon-based devices may become more efficient as a result."
The Department of Physics is part of NC State's College of Physical and Mathematical Sciences.

New Deep-Sea Hot Springs Discovered in Atlantic: Hydrothermal Vents May Contribute More to Oceans' Thermal Budget


Chimney-like structures spew hot fluids of up to 300 degrees Celsius that contain large amounts of methane and hydrogen sulfide.
Scientists from the MARUM Center for Marine Environmental Sciences and the Max Planck Institute for Marine Microbiology in Bremen on board the German research vessel Meteor have discovered a new hydrothermal vent 500 kilometres south-west of the Azores.
The vent with chimneys as high as one meter and fluids with temperatures up to 300 degrees Celsius was found at one thousand metres water depth in the middle of the Atlantic Ocean. The discovery of the new deep-sea vent is remarkable because the area in which it was found has been intensively studied during previous research cruises. The MARUM and Max Planck researchers describe their discovery in their video blog.
The Bremen scientists were able to find the hydrothermal vent by using the new, latest-generation multibeam echosounder on board the research vessel Meteor that allows the imaging of the water column above the ocean floor with previously unattained precision. The scientists saw a plume of gas bubbles in the water column at a site about 5 kilometers away from the known large vent field Menez Gwen that they were working on. A dive with the remote-controlled submarine MARUM-QUEST revealed the new hydrothermal site with smokers and animals typically found at vents on the Mid-Atlantic Ridge.
Since the discovery of the new vent, the scientists have been intensively searching the water column with the multibeam echosounder. To their astonishment, they have already found at least five other sites with gas plumes. Some even lie outside the volcanically active spreading zone in areas where hydrothermal activity was previously not assumed to occur.
"Our results indicate that many more of these small active sites exist along the Mid-Atlantic Ridge than previously assumed," said Dr. Nicole Dubilier, the chief scientist of the expedition. "This could change our understanding of the contribution of hydrothermal activity to the thermal budget of the oceans. Our discovery is also exciting because it could provide the answer to a long standing mystery: We do not know how animals travel between the large hydrothermal vents, which are often separated by hundreds to thousands of kilometres from each other. They may be using these smaller sites as stepping stones for their dispersal."
Research on deep-sea hydrothermal vents in the Atlantic is the objective of the 30 marine scientists from Hamburg, Bremen, Kiel, Portugal, and France who have been on board the German research vessel Meteor since September 6th. The expedition to the submarine volcano Menez Gwen near the Azores is financed by MARUM, the Center for Marine Environmental Sciences in Bremen. "One of the questions that the team would like to answer is why the hydrothermal sources in this area emit so much methane -- a very potent greenhouse gas," says chief scientist Nicole Dubilier, who is also a member of the Steering Committee of the Census of Marine Life Vents and Seeps project ChEss (Chemosynthetic Ecosystem Science). "Another important focus of the research is the deep-sea mussels that live at the hydrothermal vents and host symbiotic bacteria in their gills. The mussels obtain their nutrition from these bacteria."
Video blog: "News from the main deck"
An expedition on a research vessel is not only marked by great moments, like this discovery; everyday life on the Meteor is also filled with other exciting activities and events. Work on a research vessel goes on round the clock throughout the entire expedition. In his video podcast "Neues vom Peildeck / News from the observation deck," available through the Hamburg-based newspaper Abendblatt, and in German and English on YouTube (see link below), Dennis Fink, a doctoral student at the Max Planck Institute for Marine Microbiology, reports on the activities of the ship's remote-operated vehicle (ROV) MARUM-QUEST, the various instruments used by the scientists and life on board the ship. In the two-minute video blogs, Fink and his colleagues show fascinating images direct from the sea floor.

Artificial White Light Becomes Eye-Friendly


White fluorescence observed by scientists from the Institute of Physical Chemistry of the PAS in CVL molecules continuously covering practically the entire range of visible light. The discovery shows that in future it will be possible to create non-thermal light sources giving the impression of natural white colour, based on single component luminophore.
A new class of organic substances -- discovered by scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences and the Faculty of Chemistry of the University of Warsaw -- emits white light with continuous spectrum. This achievement provides experimental evidence that only a single component luminophore will be necessary to construct eye-friendly light sources and displays.
Tired eyes and the impression that white is artificial are known to everyone who spends time in places lighted by popular non-thermal sources like fluorescent lamps or LEDs. Scientists from laboratories all over the world have been trying to eliminate these unpleasant side effects for years in their search for methods to recreate sunlight, which is the most natural light for humans. In the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS), it was shown that this objective could be achieved. "We have discovered a class of organic molecules emitting white light with continuous spectrum covering almost the entire visible range," says Dr Jerzy Karpiuk from the IPC PAS who heads the research team. It is also important that the emission of the white light was obtained from one chemical compound with a very simple structure.
White is a special colour which is created as a result of mixing light of all wavelengths in the visual range -- i.e., from approximately 420 to 730 nanometres (one nanometer is one billionth part of a meter). The white colour of fluorescent lamps and similar artificial sources is created by the mixture of three colours only: red, green and blue, which come mainly from the non-continuous emissions of various inorganic (halophosphate or triphosphate) luminophores. The light obtained in this way is devoid of many colour components, and it is this effect that is responsible for the unpleasant visual sensations. In addition, the need to use several substances lowers the energetic efficiency of light sources and complicates their manufacturing technology.
The research team composed of Jerzy Karpiuk (IPC PAS), Ewelina Karolak (IPC PAS) and Jacek Nowacki (Faculty of Chemistry of the University of Warsaw) observed white light emission continuously covering virtually the entire visible range. Its source is crystal violet lactone (CVL), a substance produced in mass quantities and commonly used in copy paper as the so-called dye precursor. A CVL molecule has two fluorophores embedded in its structure and responsible for the emission of light: one for blue and the other one for orange. The contribution of each of them to CVL's dual fluorescence heavily depends on the environment of the molecule which modifies the energetics of their excited states. "By properly adjusting the molecule's surrounding, it is possible to control the parameters of the emission spectrum, and consequently, to change the colour or shade of the white light obtained," says Ewelina Karolak, a PhD student from the IPC PAS.
"The deeper significance of our research lies in the discovery that white fluorescence is a general property of CVL type molecules. The dependence of excited state energetics on molecular structure allows to predict the width, shape and other parameters of the dual fluorescence spectrum, and so enables the engineering and customised design of white fluorophores," adds Dr Karpiuk. It turns out that even very small molecules can emit continuous white light. This fact opens up a new perspective for the construction of innovative eye-friendly light sources.
The emission of white light by molecular structures as simple as CVL is highly desired and wanted phenomenon, mainly because of its potential use in organic light-emitting diodes. However, it is still a long way before it can be used in practice because crystal violate lactone emits light of low intensity and CVL-based light sources would not be efficient enough to be manufactured on a mass scale. "However, the most important thing is that we managed to show that a certain concept works in practice. Now we are sure that it is only a matter of time before light sources recreating natural white light will be constructed," Dr Karpiuk sums up the discovery.
An article on the discovery of white fluorescence was published in Physical Chemistry Chemical Physics journal.

Sunday, October 10, 2010

Can You Analyze Me Now? Cell Phones Bring Spectroscopy to the Classroom


A few basic, inexpensive components and a cellular pone are all high school students need to build a spectrometer, a widely used analytical chemistry instrument.
University of Illinois chemistry professor Alexander Scheeline wants to see high school students using their cell phones in class. Not for texting or surfing the Web, but as an analytical chemistry instrument.
Scheeline developed a method using a few basic, inexpensive supplies and a digital camera to build a spectrometer, an important basic chemistry instrument. Spectrophotometry is one of the most widely used means for identifying and quantifying materials in both physical and biological sciences.
"If we want to measure the amount of protein in meat, or water in grain, or iron in blood, it's done by spectrophotometry," Scheeline said.
Many schools have a very limited budget for instruments and supplies, making spectrometers cost-prohibitive for science classrooms. Even when a device is available, students fail to learn the analytical chemistry principles inherent in the instrument because most commercially available devices are enclosed boxes. Students simply insert samples and record the numbers the box outputs without learning the context or thinking critically about the process.
"Science is basically about using your senses to see things -- it's just that we've got so much technology that now it's all hidden," Scheeline said.
"The student gets the impression that a measurement is something that goes on inside a box and it's completely inaccessible, not understandable -- the purview of expert engineers," he said. "That's not what you want them to learn. In order to get across the idea, 'I can do it, and I can see it, and I can understand it,' they've go to build the instrument themselves. "
So Scheeline set out to build a basic spectrometer that was not only simple and inexpensive but also open so that students could see its workings and play with its components, encouraging critical-thinking and problem-solving skills. It wouldn't have to be the most sensitive or accurate instrument -- in fact, he hoped that obvious shortcomings of the device would reinforce students' understanding of its workings.
"If you're trying to teach someone an instrument's limitations, it's a lot easier to teach them when they're blatant than when they're subtle. Everything goes wrong out in the open," he said.
In a spectrometer, white light shines through a sample solution. The solution absorbs certain wavelengths of light. A diffraction grating then spreads the light into its color spectrum like a prism. Analyzing that spectrum can tell chemists about the properties of the sample.
For a light source, Scheeline used a single light-emitting diode (LED) powered by a 3-volt battery, the kind used in key fobs to remotely unlock a car. Diffraction gratings and cuvettes, the small, clear repositories to hold sample solutions, are readily available from scientific supply companies for a few cents each. The entire setup cost less than $3. The limiting factor seemed to be in the light sensor, or photodetector, to capture the spectrum for analysis.
"All of a sudden this light bulb went off in my head: a photodetector that everybody already has! Almost everybody has a cell phone, and almost all phones have a camera," Scheeline said. "I realized, if you can get the picture into the computer, it's only software that keeps you from building a cheap spectrophotometer."
To remove that obstacle, he wrote a software program to analyze spectra captured in JPEG photo files and made it freely accessible online, along with its source code and instructions to students and teachers for assembling and using the cell-phone spectrometer. It can be accessed through the Analytical Sciences Digital Library.
Scheeline has used his cell-phone spectrometers in several classroom settings. His first classroom trial was with students in Hanoi, Vietnam, as part of a 2009 exchange teaching program Scheeline and several other U. of I. chemistry professors participated in. Although the students had no prior instrumentation experience, they greeted the cell-phone spectrometers with enthusiasm.
In the United States, Scheeline used cell-phone spectrometers in an Atlanta high school science program in the summers of 2009 and 2010. By the end of the 45-minute class, Scheeline was delighted to find students grasping chemistry concepts that seemed to elude students in similar programs using only textbooks. For example, one student inquired about the camera's sensitivity to light in the room and how that might affect its ability to read the spectrum.
"And I said, 'You've discovered a problem inherent in all spectrometers: stray light.' I have been struggling ever since I started teaching to get across to university students the concept of stray light and what a problem it is, and here was a high school kid who picked it right up because it was in front of her face!" Scheeline said.
Scheeline has also shared his low-cost instrument with those most likely to benefit: high school teachers. Teachers participating in the U. of I. EnLiST program, a two-week summer workshop for high school chemistry and physics teachers in Illinois, built and played with cell-phone spectrometers during the 2009 and 2010 sessions. Those teachers now bring their experience -- and assembly instructions -- to their classrooms.
Scheeline wrote a detailed account of the cell-phone spectrometer and its potential for chemistry education in an article published in the journal Applied Spectroscopy. He hopes that the free availability of the educational modules and software source code will inspire programmers to develop smart-phone applications so that the analyses can be performed in-phone, eliminating the need to transfer photo files to a computer and turning cell phones into invaluable classroom tools.
"The potential is here to make analytical chemistry a subject for the masses rather than something that is only done by specialists," Scheeline said. "There's no doubt that getting the cost of equipment down to the point where more people can afford them in the education system is a boon for everybody."

Structure of Plastic Solar Cells Impedes Their Efficiency


A team of researchers from North Carolina State University and the U.K. has found that the low rate of energy conversion in all-polymer solar-cell technology is caused by the structure of the solar cells themselves. They hope that their findings will lead to the creation of more efficient solar cells.
Polymeric solar cells are made of thin layers of interpenetrating structures from two different conducting plastics and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. However, these solar cells aren't yet cost-effective to make because they only have a power conversion rate of about three percent, as opposed to the 15 to 20 percent rate in existing solar technology.
"Solar cells have to be simultaneously thick enough to absorb photons from the sun, but have structures small enough for that captured energy -- known as an exciton -- to be able to travel to the site of charge separation and conversion into the electricity that we use," says Dr. Harald Ade, professor of physics and one of the authors of a paper describing the research. "The solar cells capture the photons, but the exciton has too far to travel, the interface between the two different plastics used is too rough for efficient charge separation, and its energy gets lost."
The researchers' results appear online in Advanced Functional Materials and Nano Letters.
In order for the solar cell to be most efficient, Ade says, the layer that absorbs the photons should be around 150-200 nanometers thick (a nanometer is thousands of times smaller than the width of a human hair). The resulting exciton, however, should only have to travel a distance of 10 nanometers before charge separation. The way that polymeric solar cells are currently structured impedes this process.
Ade continues, "In the all-polymer system investigated, the minimum distance that the exciton must travel is 80 nanometers, the size of the structures formed inside the thin film. Additionally, the way devices are currently manufactured, the interface between the structures isn't sharply defined, which means that the excitons, or charges, get trapped. New fabrication methods that provide smaller structures and sharper interfaces need to be found."
Ade and his team plan to look at different types of polymer-based solar cells to see if their low efficiencies are due to this same structural problem. They hope that their data will lead chemists and manufacturers to explore different ways of putting these cells together to increase efficiency.
"Now that we know why the existing technology doesn't work as well as it could, our next steps will be in looking at physical and chemical processes that will correct for those problems. Once we get a baseline of efficiency, we can redirect research and manufacturing efforts."
The research was funded by a grant by the U.S. Department of Energy and the Engineering and Physical Sciences Research Council, U.K. The Department of Physics is part of NC State's College of Physical and Mathematical Sciences.

Chemists Simplify Biodiesel Conversion


Waste not, want not: Aaron Socha, left, and Jason Sello devised a way to convert waste vegetable oil to biodiesel in a single reaction vessel, using environmentally friendly catalysts.
As the United States seeks to lessen its reliance on foreign oil, biodiesel is expected to play a role. According to the National Renewable Energy Laboratory, a branch of the Department of Energy, biodiesel "represents a significant energy resource and could someday supply 3 percent to 5 percent of the distillate fuel market."
One major obstacle to achieving that goal is figuring how to efficiently convert the abundant stocks of waste vegetable oil (oil used after cooking French fries, for example) into biodiesel fuel. Current techniques take time, are costly and are inefficient. Worse, the conversion requires the toxic chemicals sulfuric acid and either potassium hydroxide or sodium hydroxide.
That's where Brown University chemist Jason Sello and postdoctoral researcher Aaron Socha come in. They write in the journal Organic & Biomolecular Chemistry that they were able to convert waste vegetable oil to biodiesel in a single reaction vessel using environmentally friendly catalysts. Their process is also six times faster than current methods for converting waste vegetable oil to biodiesel, so it consumes less energy.
"We wanted to develop an environmentally benign and technically simple way to convert waste vegetable oil into biodiesel," said Sello, assistant professor of chemistry. "The production of energy at the expense of the environment is untenable and should be avoided at all costs."
Waste vegetable oil is made up of triacylglycerols, free fatty acids, and water. The conventional way to convert waste vegetable oil into biodiesel requires two separate reactions. The first reaction turns the free fatty acids into biodiesel, but that conversion requires sulfuric acid. The second reaction converts the triacylglycerols into biodiesel, but that conversion requires sodium hydroxide or potassium hydroxide. Sodium hydroxide/potassium hydroxide and sulfuric acid are not compatible with each other, so the reactions must be carried out in separate vessels. That makes the process less efficient.
To find a better way, Sello and Socha went looking for catalysts that would be cheap, chemically stable and of limited toxicity. They settled on the metals bismuth triflate and scandium triflate, commonly used as catalysts in preparative organic chemistry. In addition, they performed the reactions using a microwave reactor instead of a conventional thermal heater. What they found was the new catalysts converted waste vegetable oil into biodiesel in about 20 minutes in the microwave reactor, whereas current reactions without catalysts using a conventional heater take two hours. While their microwave method needs a higher temperature to pull off the biodiesel conversion -- 150 degrees Celsius versus 60 degrees Celsius under current methods -- it uses less energy overall because the reaction time is much shorter.
The chemists also were able to perform the conversion in one reaction vessel, since the catalysts can promote both the reaction that converts free fatty acids into biodiesel and the reaction in which triacylgycerols are converted to biodiesel.
The team also reports that the catalysts in the free fatty acid conversion, which is the more challenging of the two reactions, could be recycled up to five times, while maintaining the capacity to promote a 97 percent reaction yield. The fact the catalysts can be recycled lowers their cost and environmental impact, the researchers said.
"While we have not yet proven the viability of our approach on an industrial scale," Sello said, "we have identified very promising catalysts and reaction conditions that could, in principle, be used for large-scale conversion of waste vegetable oil into biodiesel in an enviornmentally sensitive manner."
The research was funded by the National Science Foundation through a grant to Sello and an American Competitiveness in Chemistry award to Socha. Brown also supported the work through a R.B. Salomon award to Sello.
In a separate yet related paper, a team led by Brown chemistry professor Paul Williard has created a new technique to chart the progress of a reaction in which virgin oils are converted into biodiesel fuel.
The technique, called DOSY (for diffusion-ordered nuclear magnetic resonance spectroscopy), observes virgin oil molecules as they shrink in size and move faster in solution during the reaction. The reaction is complete when all of the molecules have been converted into smaller components known as fatty acid esters. These fatty acid esters are used as biodiesel fuel.
The results are published in the journal Energy & Fuels. The research was funded by the National Science Foundation. Contributing authors include Sello, Socha, Brown graduate students Gerald Kagan and Weibin Li, and lab technician Russell Hopson.

Effects of Hydrogen on Growing Carbon Nanotubes


Carbon nanotubes -- long, hollow cylinders of carbon billionths of a meter in diameter -- have many potential uses in nanotechnology, optics, electronics, and many other fields. The exact properties of nanotubes depend on their structure, and scientists as yet have little control over that structure, which is determined during the initial formation -- or growth -- of the nanotubes. In fact, says chemical engineer and materials scientist Eray Aydil of the University of Minnesota, "we do not know precisely how the nanotubes grow."
In a paper in the American Institute of Physics' Journal of Applied Physics, Aydil, professor of chemical engineering and materials science and the Ronald L. and Janet A. Christenson Chair in Renewable Energy, and his colleagues shed new light on the process. In particular, the researchers examined the influence of hydrogen gas.
"Carbon nanotubes grow from a metal catalyst particle that is immersed in a gas like methane," Aydil explains. "Sometimes hydrogen gas is also added and it was found that a little bit of hydrogen helps to grow carbon nanotubes with nice straight walls and with few defects. However, too much hydrogen addition gives fibers with thick walls, instead of nanotubes, or no growth at all."
To understand why, Aydil and colleagues used transmission electron microscopy and other methods to systematically image and characterize the effects of increasing concentrations of hydrogen. "It turns out that the iron metal catalysts turn to iron carbide by reacting with the carbon in methane. Iron carbide is a hard material that is not easily deformed, and carbon nanotubes grown from such catalysts tend to have nice straight walls," he says.
Adding more hydrogen to the mix causes iron carbide to turn into iron -- which is more malleable and ductile, and "deforms into shapes that give rise to more fiber-like structures rather than hollow carbon nanotubes," he says. At higher concentrations, hydrogen etches the forming carbon nanotubes, "and growth stops all together. It is the interaction of the hydrogen with the catalysts and its effect on the catalyst's structure that controls the carbon nanotube structure."

NASA's WMAP Project Completes Satellite Operations: Mission Observed Universe's Oldest Light


The detailed, all-sky picture of the infant universe created from seven years of WMAP data. The image reveals 13.7 billion year old temperature fluctuations (shown as color differences) that correspond to the seeds that grew to become the galaxies. The signal from the our Galaxy was subtracted using the multi-frequency data. This image shows a temperature range of ± 200 microKelvin. 
After nine years of scanning the sky, the Wilkinson Microwave Anisotropy Probe (WMAP) space mission has concluded its observations of the cosmic microwave background, the oldest light in the universe. The spacecraft has not only given scientists their best look at this remnant glow, but also established the scientific model that describes the history and structure of the universe.
"WMAP has opened a window into the earliest universe that we could scarcely imagine a generation ago," said Gary Hinshaw, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Md., who manages the mission. "The team is still busy analyzing the complete nine-year set of data, which the scientific community eagerly awaits."
WMAP was designed to provide a more detailed look at subtle temperature differences in the cosmic microwave background that were first detected in 1992 by NASA's Cosmic Background Explorer (COBE). The WMAP team has answered many longstanding questions about the universe's age and composition. WMAP acquired its final science data on Aug. 20. On Sept. 8, the satellite fired its thrusters, left its working orbit, and entered into a permanent parking orbit around the sun.
"We launched this mission in 2001, accomplished far more than our initial science objectives, and now the time has come for a responsible conclusion to the satellite's operations," said Charles Bennett, WMAP's principal investigator at Johns Hopkins University in Baltimore.
WMAP detects a signal that is the remnant afterglow of the hot young universe, a pattern frozen in place when the cosmos was only 380,000 years old. As the universe expanded over the next 13 billion years, this light lost energy and stretched into increasingly longer wavelengths. Today, it is detectable as microwaves.
WMAP is in the Guinness Book of World Records for "most accurate measure of the age of the universe." The mission established that the cosmos is 13.75 billion years old, with a degree of error of one percent.
WMAP also showed that normal atoms make up only 4.6 percent of today's cosmos, and it verified that most of the universe consists of two entities scientists don't yet understand.
Dark matter, which makes up 23 percent of the universe, is a material that has yet to be detected in the laboratory. Dark energy is a gravitationally repulsive entity which may be a feature of the vacuum itself. WMAP confirmed its existence and determined that it fills 72 percent of the cosmos.
Another important WMAP breakthrough involves a hypothesized cosmic "growth spurt" called inflation. For decades, cosmologists have suggested that the universe went through an extremely rapid growth phase within the first trillionth of a second it existed. WMAP's observations support the notion that inflation did occur, and its detailed measurements now rule out several well-studied inflation scenarios while providing new support for others.
"It never ceases to amaze me that we can make a measurement that can distinguish between what may or may not have happened in the first trillionth of a second of the universe," says Bennett.
WMAP was the first spacecraft to use the gravitational balance point known as Earth-Sun L2 as its observing station. The location is about 930,000 miles or (1.5 million km) away.
"WMAP gave definitive measurements of the fundamental parameters of the universe," said Jaya Bapayee, WMAP program executive at NASA Headquarters in Washington. "Scientists will use this information for years to come in their quest to better understand the universe."
Launched as MAP on June 30, 2001, the spacecraft was later renamed WMAP to honor David T. Wilkinson, a Princeton University cosmologist and a founding team member who died in September 2002.